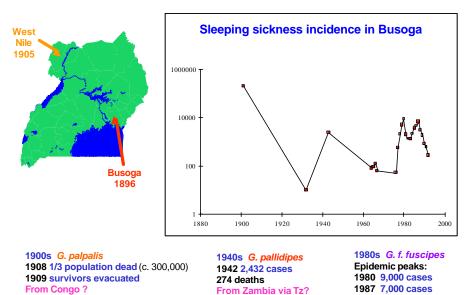


Sleeping sickness


Gambiense chronic disease recently resurged in the Democratic Republic of Congo (DRC), Angola, southern Sudan and northwest Uganda

Rhodesiense acute disease serious epidemics in southeast Uganda from 1940s- onwards

Uganda remains the only country with foci of both Gambiense and Rhodesiense sleeping sickness

Three major epidemics in SE Uganda last century 1900, 1940, 1980

Evidence for the zoonotic reservoir of *T. b. rhodesiense*

Wild animal reservoir

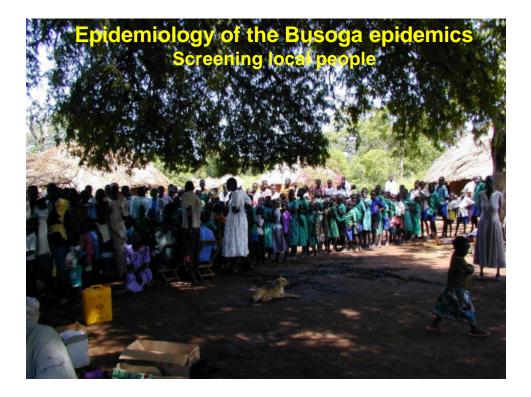
Bushbuck

1950's (Heisch, McMahon and Manson-Barr) Shores of Lake Victoria Used human 'volunteers' to differentiate parasite

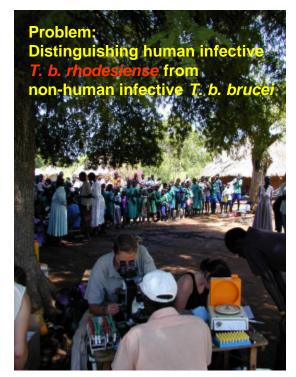
Domestic livestock reservoir Cattle

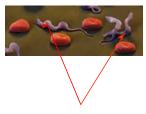
1960's (Onyango and de Raadt)

Alego outbreak – shores of Lake Victoria Differentiation by human 'volunteers'


Vector

G. pallidipes moved into SE Uganda 1940s carrying **zoonotic** infection from game (MacKitchan, 1944)





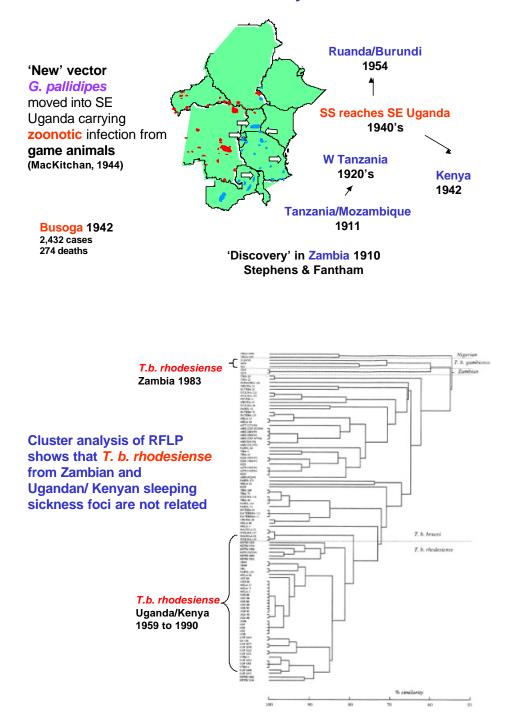
T.b.rhodesiense sleeping sickness parasites are simple to identify in patients from a wet blood film.

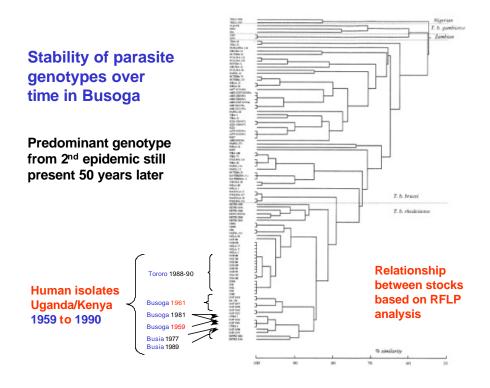
Animals can harbour both *T.b.rhodesiense* and *T.b.brucei* - technical problem: how to distinguish morphologically identical parasites in animal blood

T.b.rhodesiense or T.b.brucei?

Origins of sleeping sickness epidemics in Busoga Insights through technology

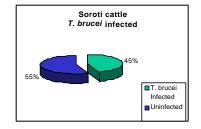
- Improvements in sample collection methods and geo-positioning
 - Increased sensitivity of analysis

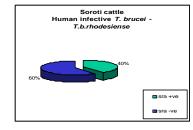

DNA technology



- •Strain genotyping species-specific PCR, RFLP, AFLP, minisatellites, MGE-PCR to
- •determine geographical range of specific genotypes
- •derive insights into origins of disease

•distinguish human infective *T. b. rhodesiense* from morphologically identical non-human infective *T. b. brucei* in animals *SRA single gene PCR*

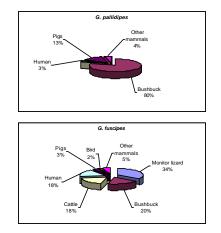

Suggested 'spread' of *T.b.rhodesiense* 1910 – 1950 from Zambia by human carriers



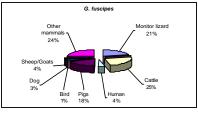
T.b. rhodesiense in the cattle reservoir

SRA (serum resistance associated gene) PCR analysis of cattle - Soroti district (Lancet 2001)

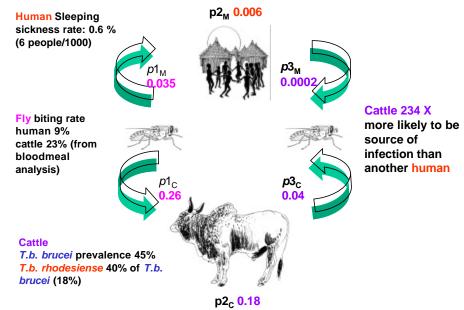
Point prevalence of *T. brucei* in cattle in Soroti 45% of which 40% have *SRA* gene.


18% of cattle in Soroti carrying human infective T. b. rhodesiense.

Previous best estimate human infective cattle: c. 1% prevalence (23% of the 5% *T. brucei* infections)

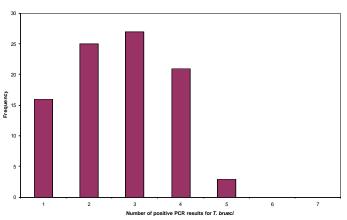

Tsetse hosts SE Uganda

1950's


2000

Loss of *G. pallidipes* as main vector Loss of bushbuck as reservoir host Cattle now main reservoir host

Measuring the risk of cattle as reservoir of sleeping sickness in SE Uganda – *SRA* analysis

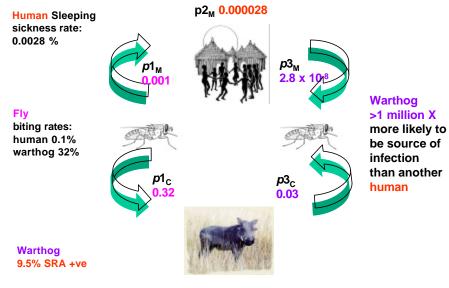


Six month longitudinal survey of *T. brucei* s.l. in cattle in SE Uganda

82.6 % cattle positive for *T. brucei* s.I

17.4 % of cattle were never positive during this period

Frequency distribution of T. brucei positives for 92 animals in Sitengo village



92 cattle in total, 7 sampling dates (644 observation in total)

Measuring the risk of warthog as reservoir of sleeping sickness in Serengeti – *SRA* analysis

p2_c 0.095

Supported by the Wellcome Trust, DFID, EU, Cunningham Trust, Leverhulmo Trust and WHO.

Sue Welburn, Kim Picozzi, Eric Fèvre, Mark Eisler (CTVM, The University of Edinburgh); Martin Odiit MD, Joseph Magona (LIRI, Uganda); Magai Kaare (Sokoine Univerisity, Tanzania); Paul Coleman (LSHTM).