RINDERPEST SURVEILLANCE IN UGANDA NATIONAL PARKS BETWEEN 1998-2003.

PAPER PRESENTED

BY

DR.C.S. RUTEBARIKA WORLD PARKS CONGRESS - DURBAN

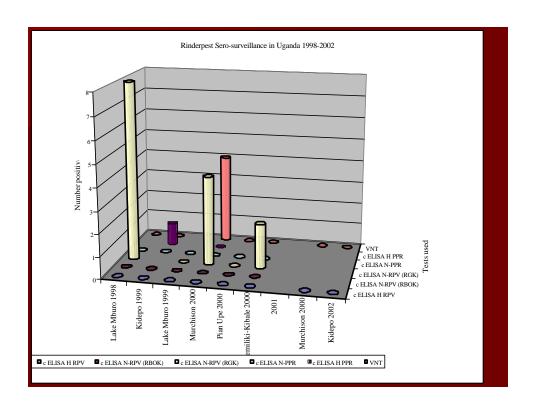
1.0 Introduction:


- Rinderpest still poses a potential threat to both the wild and domestic ungulates in Eastern Africa.
- RP undermines food security and promotes poverty in affected countries.
- Serological relationship exists between RP and PPR but the viruses are not identical.
- RP infection produces life long immunity and protects against RP related strains.

- Rinderpest was introduced into Uganda in the 19th century.
- Uganda participated in the JP-15 (1962-1972) programme and the PARC programme (1988-2001).
- Rinderpest vaccination ceased in Uganda in 2001.
- Last outbreak was reported June, 1994.
- Serosurveillance in both the wildlife and livestock has been major tool for monitoring presence or absence of rinderpest virus circulation.

2.0 Materials and Methods:

- Sera samples were collected from these National Parks and Game Reserves:
 - Kidepo NP,
 - Pian Upe GR
 - Murchison Falls NP
 - Semliki GR
 - Kibaale NP
 - Lake Mburo NP


- Representative samples from all age groups were collected.
- Both aerial and ground darting were used.
- Samples were collected from buffalo, impala, topi, bushbucks and warthog.
- The samples were collected between May 1999 and October 2002.
- Samples collected by a team from PACE Uganda, UWA and PACE-AU/IBAR.

2.2 Techniques used to analyse the samples

- Six tests were used during sample analysis:
 - C ELISA H RPV,
 - C ELISA N PRV (RBOK),
 - C ELISA N RPV (RGK),
 - C ELISA N PPR,
 - C ELISA H PPR
 - VNT.
- These tests were meant to verify Rinderpest antibody existence in the samples.
- Four laboratories were used in sample analysis (Entebbe, Muguga, CIRAD and Pirbright).

NP & Year	iviburo	Kidepo	Murchison	Pian Upe	Kibale	C ELISA	C ELISA	C ELISA	C ELISA	C ELISA	
						H RPV	N-RPV (RBOK)	N-RPV (RGK)	N-PPR	H-PPR	v
						пкгу	N-RPV (RDOK)	N-RPV (RGK)	N-PPK	п-ггк	
ike Mburo 1998	Impaia (30)					Ü	Ŭ	- 8	Ü		
1996	Impaia (50)							·			
Kidepo 1999		Buffalo(11)				Ü	Ō		Ō	i	
	Buffalo(6)										
	Topi (3)										
ake Mburo											
1999	Warthog (1)										
Aurchison											
2000			Buffaio(17)			0	Û	4	0	Û	
				Roan(1)		0	0	0	0		
				Kongoni (2)							
ian Upe											
2000				Buffaio (6)							
Semliki -											
Kibal e					Buffalo (16)						
2000											
Kidepo 2002		Buffalo(17)									
viurchison			Buffalo (8)			Û					

4.0 Discussion:

- From the results and their analysis;
- The most specific test in the detection of wildlife rinderpest antibodies is C ELISA N RPV (RGK).
- Up to the year 2000, rinderpest antibodies were detectable in the sentinel population (wildlife) in Uganda by the two tests; VNT and C ELISA RPV (RGK).
- The VNT and C ELISA H RPV on the samples of the year 2002 were all negative.
- Fewer animals tested positive with C ELISA N RPV (RGK) test since 1988.

- The VNT tallied with C ELISA N RPV (RGK) on the samples from Murchison Falls National Park, indicating four animals positive in 2000.
- Three national parks; Lake Mburo, Murchison, Semliki and Kibale, out of the six NPs/game reserves sampled, showed some few animals with rinderpest are showing antibodies.
- The evidence of antibodies in the sentinel population makes it necessary to maintain keen interest in wildlife surveillance to guard against any possibility of disease surge.
- However, the animals that were positive were adults and could have been exposed to infection earlier in life.

5.0 Conclusion:

- Wildlife surveillance remains a very important tool in rinderpest surveillance.
- Sampling techniques and diagnostic tests, however, need to be perfected so as to detect RPV circulating.
- It is evident that there is no RPV in circulation in Uganda National Parks.
- This is further supported by the passive surveillance data that is collected using surveillance formats filled by the district staff monthly.